
136 

Acta Cryst. (1988). A44, 136-142 

The Debye-Waller Factor for Polyatomic Solids. Relationships Between X-ray and 
Specific-Heat Debye Temperatures. The Debye-Einstein Model 

BY R. D. HORNING 

Honeywell Physical Sciences Center, 10701 Lyndale Avenue South, Bloomington, M N  55420, USA 

AND J.-L. STAUDENMANN 

Howard Hughes Medical Institute, E. E. Department-Columbia University, Brookhaven National Laboratory, 
NSLS-X4 /B ldg  725, Upton, N Y  11973, USA 

(Received 8 May 1987; accepted 18 September 1987) 

Abstract 

The Debye-Waller factor for a polyatomic crystal is 
derived in the Debye approximation. If the crystal 
has a basis of p atoms per lattice point, it is shown 
that the specific-heat Debye temperature, 690, and 
the X-ray Debye temperature, 69M, are related by 
69D ~ 69Mp 1/2 in the classical limit. The Debye and 
Einstein theories are then combined to yield an 
expression for the Debye-Waller factor of a poly- 
atomic solid. The acoustic phonon modes are 
described with a Debye approximation, and the optic 
modes with an Einstein model. For temperatures 
above the Debye temperature, the Debye and Einstein 
parts of the Debye-Waller factor have the same 
dependence on temperature and diffraction vector. 
Thus, the two parts cannot be distinguished. 

I. Introduction 

In general, the thermal vibration of the atoms in a 
crystal causes the intensities of Bragg reflections to 
decrease. The vibration magnitude of an atom in a 
unit cell primarily depends upon the temperature, its 
mass, and its surroundings: the way it is bonded to 
its neighbors (local symmetry). That is, each kind of 
atom in a unit cell has its own vibration amount 
which, in general, is anisotropic, and its effect on 
diffracted intensities is referred to as the temperature 
factor or as the Debye-Waller factor. In the case of 
isotropic vibrations, a Debye temperature 69M can be 
extracted from such factors. The physical interpreta- 
tion of temperature factors is direct when discussions 
are restricted to diffraction measurements. However, 
the connection between thermal parameters and 
Debye temperatures extracted from specific-heat 
(Oo) or thermal-expansion measurements is difficult. 

In 1912, Debye published the theory of specific 
heat in solids. Two years later, he succesfully quan- 
tified the decrease of X-ray intensities (Debye, 1914) 
where 69M, the characteristic Debye temperature, is 
introduced as the key parameter. Subsequently, Zener 
& Bilinsky (1936) showed that 69M is not exactly the 
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same as the Debye temperature, Oo, of the specific- 
heat model. The difference is in the averaging between 
the velocities of the longitudinal and transverse 
phonons. Later, Barron, Leadbetter, Morrison & Sal- 
ter (1966) stated that 69M should deviate from 69o by 
only a few percent. Expanding on Biackman's (1956) 
ideas, Barron et al. (1966) further pointed out that 
this approximation does not hold in all cases since 
real crystals do not strictly obey the Debye 
assumptions. Moreover, they demonstrated that more 
realistic frequency distributions could be described 
by temperature-dependent Debye temperatures, 
69o(T) and 69M(T). Later, Reeber (1974) introduced 
a correspondence between lattice characteristic tem- 
peratures and Debye temperatures applied to the 
zinc-blende, the caesium chloride, and the alkali 
halide structures. These authors did not, however, 
show a relationship between 69o and 69M, which is 
one of the goals of this paper. 

The Debye model is valid only for simple cubic 
monatomic solids. However, it has frequently been 
applied to polyatomic crystals. The same equations 
and nomenclature are used, although the physical 
interpretation of the Debye temperature is not as 
clear. It is the purpose of this paper to put the applica- 
tion to polyatomic crystals on a more rigorous basis. 
In contrast to the monatomic case, it will be shown 
that 69M and 69D differ widely for compounds. For 
purposes of illustration, the formalism will be applied 
to diatomic solids (see Table 1 ), in particular to GaAs 
and CdTe where the agreement between t9o and the 
corresponding value calculated from 69M is out- 
standing. 

In the modified Debye theory, there is no distinc- 
tion between the acoustic and the optic branches of 
the phonon dispersion curves. That is, all branches 
are equivalent. Integrations are done in an 'extended' 
Brillouin zone, which has a volume containing a 
number of wave vectors equal to the number of atoms 
in the crystal. A more realistic approach is outlined 
below, in which the Debye expression is used for the 
acoustic modes only and the optic modes are grouped 
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Table 1. Comparisons between experimental X-ray and specific-heat Debye temperatures in the classical 
limit for diatomic solids 

Numbers between parentheses indicate the temperatures at which the determinations have been made. A " P "  in front of a 
0M value indicates an X-ray powder measurement. References are given in an abbreviated form. The first three letters of the 
principal author's name are followed by the year of publication. 

Compound Structure type 0o(K) Reference 

GaAs ZnS ~355 Nov-61 
InSb ZnS 240 Pie-66 
CdTe ZnS -200 Dem-69 

Bir-75 

HgTe ZnS 112 (0) Rus-70 
LiF NaCI 645 (300) Nue-67 
NaCI NaCI 275 (300) Nue-67 

290 (co) Bar-57 
KCI NaCI 235 (co) Bar-57 

KBr NaCI 188 (co) Bar-57 
174 (0) Sha-70 
123 (300) Sha-70 

PbS NaCI 227 (200) Par-54 
RbCI NaCI 
SmS NaCI 269 (100) Smi-72 

266 (300) Bad-73 
SmSe NaCI 206 (100) Smi-72 
TiNo.99 NaCI 485 (70) Roe-76 
TiNo9 NaCI 
CsCI CsCI 162 (300) Vet-70 
CsBr CsCI 179 (co) Red-72 

120 (300) Vet-70 
CsI CsCi 101 (co) Red-72 

105 (300) Vet-70 
TICI CsCI 157 (co) Red-72 

TIBr CsCI 118 (co) Red-72 

0M (K) 0M ( K)x/2 Reference 

247 349 Arn-63 
153 216 Bil-76 
141 199 Wal-70 

Zub-75 
Hor-86 

73 (32) 103 Ske-72 
623 (300) 881 Mar-78 
265 (300) 375 Mar-78 
280 (300) 396 Ges-71 
216 (300) 305 Mar-78 
204 (300) 288 Cha-71 
218 (300) 308 Pat-73 

P 213 (300) 301 Pat-69 
148 (300) 209 Mar-78 
160 (300) 226 Pat-73 

P 144 (300) 204 Sub-78a 
P 157 (300) 222 Jar-67 
P 155 (300) 219 Sub-77 

P 153 (300) 216 Sub-77 

332 (300) 470 Chr-78 
151 (300) 214 Bar-66 

P 118 (300) 167 Sub-78b 

P 101 (300) 143 Sub-78b 

P 101 (300) 143 Sub-78b 
P 95 135 Haa-77 
P 95 (300) 134 Sub-78b 

into one band and treated in the Einstein (1907) 
approximation. In this model,  integrations are done 
in a 'reduced' Brillouin zone. Since the optic branches 
are often relatively flat, they can be described reason- 
ably well by one frequency. Such a model has some- 
times been used to interpret specific-heat data by 
Brening & Schroder (1952), Bichsel (1979) and 
Geibel, Rietschel, Junod, Pelizzone & Muller (1985) 
and others. The necessity of  the Debye-Einstein 
model can be seen, for instance, in the case of a 
diatomic compound CdTe for which the phonon dis- 
persion curves were measured by Rowe, Nicklow, 
Price & Zanio (1974) using inelastic neutron scatter- 
ing. These curves show the optic branches lying 
around 4-4 THz which is equivalent to OE ~-210 K. 
Therefore, even at quite low temperatures the optic 
modes are occupied. 

The paper is organized as an extended theory sec- 
tion and a discussion. The first two theory parts can 
be found in most textbooks as, for instance, in 
Ashcroft & Mermin (1976). The formalism is, 
however, closer to that of  Willis & Pryor (1975). 

II. Theory 
II.1. Background 

As shown by James (1982), the intensity of  a Bragg 
reflection is proportional to the magnitude of the 

structure factor, F(H) ,  or its square, [F(H)]  2, 
depending upon the nature of the crystal: perfect or 
mosaic, respectively. The structure factor can be com- 
puted as 

p 

F ( H ) =  E f j ( H ) e x p ( - M ~ ) e x p ( - i H . r j ) ,  (1) 
j = l  

where H is the diffraction vector, [HI = 4w(sin 0)/2,  
rj is the position of the jth atom in the unit cell, p is 
the number of atoms in the unit cell, fj(H) is the 
atomic form factor o f t h e j t h  atom, exp ( - i l l .  r~) is a 
phase factor indicating the contribution of the jth 
atom in the unit cell, and exp ( - M j )  is the tem- 
perature factor describing the atomic motions about 
the crystallographic position rj. Let uj be the average 
deviation o f the j th  atom from rj. From Willis & Pryor 
(1975) one finds that 

Mj = ½ ( In .  ujl 2} (2) 

where the angle brackets denote an average over a 
time period which is long compared with vibrational 
periods. 

A well known result of  lattice dynamics is that a 
crystal with N unit cells and p atoms per unit cell 
has 3pN normal modes of  vibration. These 3pN 
eigenfrequencies form 3p branches in the dispersion 
relations with N allowed wave vectors in each branch. 
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Each mode is represented by a wave vector K, an 
index s, labelling the branch, a frequency tos(K), an 
amplitude A~(K), and a normalized 3p-dimensional 
eigenvector e~(K). The eigenvectors can be written as 

I_e~(p, ~) 

Each e~(j, K) is a three-dimensional vector represent- 
ing the direction of displacement of the j th atom from 
its crystallographic position. The normalization con- 
dition on the eigenvector is 

p 

e,(K),  t~,,(K) = Z e,(j ,  ~) .  es'(.L K) = 6,.,,. (4) 
j = l  

At a particular instant, the position of the j th atom 
in the unit cell is the sum of the contributions from 
each normal mode, 

1 3p 

uj(t) = ~ Y" ~ e~(j, K)A~(K) 
f f i j  s = 1 K 
Xexp[--i(K.rj--to,(K)t)]. (5) 

The mass-normalized amplitudes A~(K) are complex. 
They contain phase factors that change randomly 
with time, corresponding to the creation and annihila- 
tion of phonons. The desired quantity is the time 
average of ]H. uj] 2. Thus, 

(IH • ujl2> = <~j  ~-~ [ H .  e~(j, K)][H. ~,(j ,  , ' ) ]  
s ,$ '  

K,I<' 

x A*(K)A:,(K')exp { i[ to~ (K) - to~,(K')It} 

× exp [ - i ( K -  ~ ' ) .  r j ] )  (6) 

where, for a given term in the sum of (6), the time 
average of (A*(l~:)A~,(14:')exp{i[to~(K)--to~,(K')t}) is 
zero if to~(K) # to,~,(K'). 

However, if K # K' and s # s', the random time- 
dependent phases in the amplitudes cause the average 
to be zero even when tos(K)= to~,(K'). This leaves 

(IH.ujl2) =1-- E[H.~,(j,K)]ZiAs(I¢,)I z. (7) 
J s, l~ 

Since this is a harmonic model, the total energy E in 
the crystal containing N unit cells is twice the kinetic 
energy, 

N p 

E =  Z Z mjl~ijl 2. (8) 
n = l j = l  

The relation between the energy per normal mode, 
Es(K), and the amplitudes is found by differentiating 
(5), which yields rij. Then by averaging over time and 

using the orthonormality condition (4), one obtains 

E = Z E,(K)= Z Nto2:(K)IA:(K)I 2. (9) 
$,K S,K 

Therefore, 

I r,~<,<>l MJ-2Nmj ~--'. [H • e~(j, K)] 2 (10) 
~,,< Lto,~(,<):>J" 

The normal modes are solutions of the Schr/Sdinger 
equation for a particle in a harmonic potential well. 
Thus, the energy eigenvalues are 

E~(K) = hto,(K)[r/s(K) + ½] (11) 

where the occupation numbers are 

rl~(K)={exp[htos(K)/kBT]-l}-'. (12) 

I1.2. The Debye model 
Debye's assumption was that all waves travelled at 

the same speed v. The dispersion relation is then 
tos(K) = Kv when tos(K) is less than some maximum 
frequency toM, and zero for larger frequencies. The 
allowed wave vectors are so closely spaced that the 
sum over K in (10) can be replaced by an integral: 

es is a function only of the direction of K, and to~ 
and Es are functions of the magnitude of K. Hence, 
the angular part of the integral is simple. For the 
radial part, a characteristic Debye temperature OM 
is defined by kt~OM = htoM = hV/KM. KM is the radius 
of a sphere in reciprocal space containing pN wave 
vectors (3pN normal modes), each wave vector 
occupying a volume (27r/a)3/N. 

In a monatomic solid, there are only three branches. 
A polyatomic solid has 3p branches which are com- 
monly represented as all in a single Brillouin zone, 
the 'reduced zone'. An alternative, but equally valid 
representation, is an 'extended-zone' scheme in which 
there are p zones, each containing three branches. 
Both representations have a total of 3p branches. In 
the Debye model, only three branches (s = 1, 2, 3) are 
assumed to exist. Thus the extended-zone scheme 
must be used, and this extended zone is treated as a 
single Brillouin zone. In other words, there is only 
one Brillouin zone, but its volume is large enough to 
contain a factor of p times more wave vectors than 
the Brillouin zone of a monatomic solid. The two 
representations are identical when p = 1. 

Mj- 2mjkBoM3ph21HI2 q~7 ) +-4 ~ (13) 

where x = OM/T and the Debye integral function is 

1 ['< y dy 
q~(x) = (14) J0 X e y -  1" 
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Note that the Debye temperature is the same for all 
atoms. The only dependence on j is in the atomic 
mass mj, and in the sum over the eigenvectors. Using 
the orthonormality condition and replacing ]H] by 
4~r(sin 0)/2, one can write 

6ph 2 [~o(x) l ] s i n 2 0  
_ mime-  +~  A2 (15) j = l kBOM X " 

The individual Mj cannot be found without further 
knowledge of the polarization vector es(j, K). 

I 1.3. The Debye- Einstein model 

The dispersion relations for the Debye-Einstein 
model are 

IS 
V O--<o~--<wM; s = 1 , 2 , 3  

fOs(K ) = tO > WM; s = 1, 2, 3. (16) 

(o)E s > 3  

The Debye temperature is defined as before: hwM = 
kBOM. An Einstein temperature is similarly defined 
by hwe = knOe. Consider a diatomic solid. In the 
Debye model, the integration yielding (13) is done 
in the first and second Brillouin zones (which were 
treated as a single zone, as explained above). In the 
Debye-Einstein model, however, the acoustic and 
optic modes are each integrated in the first Brillouin 
zone only (the reduced-zone scheme). Fig. 1 illus- 
trates the comparison between the Debye and the 
Debye-Einstein models as applied to a diatomic crys- 
tal (Ashcroft & Mermin, 1976). 

I l I 

Aw t J 

/ / j  
I I 

-k  
kD 

[ I  

I i  
I I  

A . I 
w I 

w E ,  
b I 

I I 

U ii I I 

ko k 
DEBYE MODEL D E B Y E - E I N S T E I N  

M O D E L  

Fig. 1. Comparison of the Debye and Debye-Einstein models for 
a diatomic solid. The Debye model has a linear dispersion 
relation and it is integrated in a sphere having a volume equal 
to the volume of the first two Brillouin zones. The Debye- 
Einstein model uses a linear dispersion relation for the acoustic 
modes, a constant for the optic modes, and it is integrated only 
in the first Brillouin zone (courtesy of Professor N. W. Ashcroft 
and Professor N. D. Mermin). 

The sum in (10) is again converted into an integral. 
KM is the radius of a sphere containing only N wave 
vectors. The integration of the optic branches is car- 
ried out in a sphere containing (p - 1) N wave vectors. 
The final result is 

~ mjMj-  6h2 [(P(xX)+~] sin20 2 ( p - 1 ) h 2  

j = 1 kBOM - - 7 - t  ksOe 

[ 1 +l]sin o 
x exp (xE)-  1 A 2 (17) 

where xE -- OE/T. By analogy with the Debye case, 
the left-hand side of (17) is pmM. Thus, the average 
thermal parameter is 

[ ~ 1] sin20 2(p-1)h2 6h 2 qo ) + 4  - - ~ 4  
M - pmkBOM pmkBO~ 

[ 1   lsin o 
x + A2 ' (18) exp (xE) - 1 

In the classical limit, the Debye and Einstein parts 
of this expression have the same dependence on tem- 
perature and on (sin 0)/A. That is, if T >  OM, then 
q~(x)/x+ 1"" T/OM. If T_> OE also, then 
1/[exp ( x E ) -  1]+½= T/OE. Thus, both terms in (18) 
are linear in T and in [(sin 0)/A] 2. That is, a least- 
squares fit to the data is not able to distinguish 
between the two terms. However, the optic modes 
contribute less to the mean square displacement, not- 
ably at low temperatures. Hence, a reasonable so- 
lution to the problem is to extract a OE from the 
measured phonon density of states (when available) 
and fit the data by varying OM only. It should be 
stated that the Debye temperature in this model is 
different from OM in the pure Debye model and also 
from Oo. For a diatomic crystal, the Debye tem- 
perature in this model should be ---x/2 smaller than 
OM in the Debye model, and a factor of - 2  smaller 
than Oo. 

Ill .  Discussion 

III.1. The Debye model 

For a monatomic solid p = 1 and (15) reduces to 
Debye's result, 

6h 2 [ 1] sin20 
q~(x)+~ h 2 (19) M - mkaO--------~ x 

For the more general case containing p atoms per 
unit cell, the left-hand side of (15) is approximately 
equal to pmM if m is the average atomic mass and 
M is the average thermal parameter. Equation (15) 
then reduces to the monatomic expression, (19), 
regardless of p. 

In polyatomic crystals, each kind of atom has a 
different Mj. Often, the thermal parameter Mj for 
each atom is assumed to be given by (19), where m 
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is the mass of the particular atom, and each atom has 
its own 'Debye temperature'.  While these 'Debye 
temperatures'  no longer have the same physical mean- 
ing as the real Debye temperature, they are still good 
measures of the mean square atomic displacements. 

Thermodynamic quantities are calculated from a 
single Debye temperature representing the compound 
investigation and not from individual Debye tem- 
peratures describing the motions of the atoms in the 
compound. In polyatomic solids, this single (gM is a 
mean of the individual Debye temperatures. Certain 
reflections must be used to extract this average (gM 
from X-ray diffraction data. For example, in a 
diatomic alloy, AB, the magnitude of the structure 
factor can be proportional to the form factors fA +fB, 
TA--TB, or (ITAI 2+ IAI2) '/= in the case of a zinc-blende 
compound. Structure factors of the first type should 
be used to find the average Debye temperature, 
although the last form is also suitable if the A and B 
atoms have similar masses (Walford & Schoeffel, 
1970). When F is proportional to fA--fB, Bilderback 
& Colella (1976), Colella (1977), and Horning & 
Staudenmann (1986) have observed that the structure 
factor F can increase with increasing temperature. 
Thus, reflections of this type are not to be used. They 
are necessary, however, when trying to extract Debye 
temperatures for individual atoms. 

Since the Debye theory is most commonly used in 
the measurement of the specific heat, it is important 
to point out the relationship between the results of 
the two methods. Zener & Bilinsky (1936) showed 
that the Debye temperatures for the longitudinal, (gL, 
and transverse, (gr, modes are averaged differently 
to obtain the overall Debye temperature. The average 
in the X-ray case is 

while 

3/(9 2 = 1/(92L + 2/(9 2 (20a) 

3/(9 3 =  1 / (93+2/ (9  3 (20b) 

for specific-heat data. Barron et al. (1966) pointed 
out that Or, and (9M should be different by no more 
than about a few percent, provided that the crystals 
are still purely Debye-like in their frequency distribu- 
tions. For polyatomic crystals, however, the difference 
between Oo and (gM becomes more important. When 
m and M are taken as the average atomic mass and 
thermal parameter, respectively, the left-hand side of 
(15) becomes pmM. This latter p cancels the p on the 
right-hand side of (15) resulting in an expression 
identical to the monatomic equation; that is, valid 
for any p. On the other hand, the specific heat is the 
temperature derivative of the total energy [see (8)]: 

Cv = - ~  ,=lj=~ = --5 ~4 NPkB (21) 

In contrast to the X-ray case, the p on the right-hand 
side of (21) is not cancelled by a p on the left-hand 
side. 

From inspection of (19) and (21), one can see that 
Or, and (9M are significantly different. The thermal 
parameter, Mj, accounts for the motion of only one 
atom, while the specific heat reflects the collective 
motion of all atoms. Finding a relationship between 
Oo and (9M requires that a thermal parameter reflect- 
ing the motions of all atoms must be postulated. In 

1 the classical limit ( T >  OM), ~o(x)/x+~ reduces to 
T~ OM. Therefore 

6h2T sin 2 0 
M - mka(9------~ A - - T - '  (22) 

where m is the average mass and M is the average 
thermal parameter. Note that (22) is valid for any p. 
Let M'  be a quantity that describes the collective 
motion of all atoms. This is accomplished by inserting 
a factor of p in the numerator of (22), analogous to 
the p in (21), and by replacing OM by O~" 

M ' =  6ph2T sin2 0 
mkB(9,M2 A2 . (23) 

(9~ is then a quantity which has the same physical 
interpretation as Or,. Here, m is still the average mass 
of the atoms. If these two expressions were fit to the 
same data, then M = M',  yielding the relation 

Or, ~- (9'M = P l/2 (gM. (24) 

Thus, rather than comparing Or, to (9M for poly- 
atomic solids, /9o should be compared to p~/2(9M. 
Or, and p~/2(9 M should still differ by a small amount 
because of the different averaging over longitudinal 
and transverse modes (Barron et al., 1966), and also 
because of the deviations of the real crystal behavior 
from the Debye assumptions. This comparison should 
be made at a temperature where the crystal thermal 
parameters are in the 'classical' regime; that is, in a 
temperature range where (9D(T) and (9M(T) are 
roughly constant. 

It is clear that the approximation made above will 
work best for solids composed of atoms with similar 
masses. Two examples are the semiconductors GaAs 
and CdTe, both having the cubic zinc-blende struc- 
ture. Ga and As have nearly equal masses, as do Cd 
and Te, and both X-ray and specific-heat Debye tem- 
peratures are available and well characterized. These 
are diatomic solids, so p = 2. Table 1 lists Or,, (gM 
and (9Mx/2 for these crystals as well as other examples 
having the CsC1 and the NaCl crystal structures. In 
particular, the agreement between Oo and (9MX/2 is 
excellent for GaAs and CdTe. In general, it is difficult 
to find references pertaining to the subject of the 
present article: they concern either (90 or (9M with 
ve.ry little overlap between these two physical quan- 
tities. Some articles, such as that of Martin & 
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O'Connor (1978), have extensive quotations from 
scattering works, and others, such as Smirnov (1972), 
are relevant only to specific heat and/or  thermal- 
expansion measurements. Table 1 is not intended to 
be exhaustive but sufficient,to show that the agree- 
ment between tgo and tgMx/2 is outstanding for a few 
cases and reasonable otherwise. In those latter cases, 
the agreement could probably be better if measure- 
ments were conducted as for CdTe and GaAs. The 
fluctuations between the above-mentioned quantities 
are too randomly distributed to extract information 
about the deviation trends. 

III.2. The D e b y e - E i n s t e i n  m o d e l  

If one applies the Debye-Einstein model to the 
CdTe X-ray diffraction data (Horning & Stauden- 
mann, 1986), the resultant Debye temperature is 
OM = 103 K when using an Einstein temperature of 
O~ = 210 K. As expected, this is smaller than tgM in 
the pure Debye model (141 K) by a factor of -x/2, 
and smaller than the specific-heat Debye temperature 
(---200 K) by a factor of two. 

The major advantage of the Debye-Einstein model 
is that it is a better physical description of a poly- 
atomic solid than the Debye approximation alone. 
From a practical standpoint, however, there is no real 
improvement. The Debye and Einstein models are 
crude. If one wants a detailed understanding of the 
lattice dynamics, better models are available. There- 
fore, the Debye and Debye-Einstein theories are use- 
ful because they provide two things: (i) a single 
quantity, OM, to characterize and compare different 
solids, and (ii) a useful number for calculating other 
quantities such as X-ray intensities, the energy band 
gap temperature dependence etc., regardless of its 
physical meaning. With respect to the first point, the 
Debye model can accomplish as much as the Debye- 
Einstein model with only one parameter. Moreover, 
this model should be compared to a specific-heat 
Debye-Einstein model. This procedure is not widely 
used with specific-heat measurements, so little com- 
parison could be done. In contrast, the Debye model 
is often used with both types of experimental 
measurements and thus they can be easily compared. 
Finally, if experimentally measured dispersion curves 
are not available for the crystal in question, then the 
Debye-Einstein model is even less useful. 

IV. Concluding remarks 

In summary, we have extended the monatomic Debye 
model to the case of polyatomic solids. Debye's theory 
has been used in the past for these types of crystals, 
but with little justification. The purpose of this paper 
was to fill that gap, and to put earlier results on a 
more rigorous basis. Our results show why X-ray and 
specific-heat Debye temperatures are quite different 

for polyatomic solids (p > 1). Experimental data for 
several diatomic compounds substantiate these 
claims. In addition, an expression for the Debye- 
Waller factor has been derived, which arises from 
putting together the Debye and Einstein models. This 
combined model was treated in a reduced-zone rep- 
resentation while the purely Debye model was treated 
in an extended-zone representation. The derivation 
and interpretation are again straightforward, but the 
practical application of the Debye-Einstein model is 
more limited than that of the Debye model. 

The authors acknowledge fruitful discussions with 
Dr J. L. Feldman of the Naval Research Laboratories 
at Washington, DC. They are also indebted to Pro- 
fessor N. W. Ashcroft and Professor N. D. Mermin 
of Cornell University for permitting them to use one 
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R. D. Horning's PhD thesis at Iowa State University 
and the Ames Laboratory. Ames Laboratory is oper- 
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contract No. W-7405-Eng-82. 

References 
ARNOLD, G. & NERESON, N. (1963). Phys. Rev. 131, 2098-2100. 
ASHCROFT, N. W. & MERMIN, N. D. (1976). Solid State Physics. 

New York: Holt, Rinehart and Winston. 
BADER, S. D., PHILLIPS, N. E. & MCWHAN, D. B. (1973). Phys. 

Rev. B, 7, 4686-4688. 
BARNEA, Z. & POST, B. (1966). Acta Cryst. 21, 181-182. 
BARRON, T. H. K., BERG, W. T. & MORRISON, J. A. (1957). Proc. 

R. Soc. London Set. A, 242, 478-492. 
BARRON, T. H. K., LEADBETTER, A. J., MORRISON, J. A. & 

SALTER, L. S. (1966). Acta Cryst. 20, 125-131. 
BICHSEL, D. (1979). PhD thesis. Univ. of Geneva. Unpublished. 
BILDERBACK, D. H. & COLELLA, R. (1976). Phys. Rev. B, 13, 

2479-2488. 
BIRCH, J. A. (1975). J. Phys. C, 8, 2043-2047. 
BLACKMAN, M. (1956). Acta Cryst. 9, 734-737. 
BRENING, W. & SCHRODER, M. (1952). Z. Phys. 132, 312-317. 
CHAIKOVSKII, E. F. & ZAGARII, L. B. (1971). Fiz. Tverd. Tela, 

13, 2486-2487. [Soy. Phys. Solid State (1972), 13, 2087-2088.] 
CHRISTENSEN, A. N. (1978). Acta Chem. Scand. Ser. A, 32, 89-90. 
COLELLA, R. (1977). Phys. Scr. 15, 143-146. 
DEBYE, P. (1912). Ann. Phys. (Leipzig), 39, 789-839. 
DEBYE, P. (1914). Ann. Phys. (Leipzig), 43, 49-95. 
DEMIDENKO, A. F. (1969). lzv. Akad. Nauk SSSR Neorg. Mater. 

5, 252-255. [Inorg. Mater. (1969), 5, 210-212.] 
EINSTEIN, A. (1907). Ann. Phys. (Leipzig), 22, 180-187. 
GEIBEL, C., RIETSCHEL, H., JUNOD, A., PELIZZONE, M. & 

MULLER, J. (1985). J. Phys. F, 15, 405-416. 
GESHKO, E. I. & MIKHAL'CHENKO, V. P. (1971). Ukr. Fiz. Zh. 

16, 637-644. 
HAAV, A., PELJO, F. & SUOR'r'rl, P. (1977). Phys. Status Solidi B, 

80, 255-264. 
HORNING, R. D. & STAUDENMANN, J.-L. (1986). Phys. Rev. B, 

34, 3970-3979. 
JAMES, R. W. (1982). The Optical Principles of the Diffraction of  

X-rays. Woodbridge, Connecticut: Ox Bow Press. 
J~RVINEN, M. & INKINEN, O. (1967). Phys. Status Solidi, 21, 

127-135. 
MARTIN, C. J. & O'CONNOR, D. A. (1978). Acta Cryst. A34, 

505-512. 
NOVIKOVA, S. I. (1961). Fiz. Tverd. Tela, 3, 178-179. [Soy. Phys. 

Solid State (1961), 3, 129-130.] 



142 THE DEBYE-WALLER FACTOR FOR POLYATOMIC SOLIDS 

NUESSLEIN, V. &. SCHRODER, U. (1967). Phys. Status Solidi, 21, 
309-314. 

PARKINSON, D. H. & QUARRINGTON, J. E. (1954). Proc. Phys. 
Soc. (London) Sect. A, 67, 569-579. 

PATHAK, P. D. & TRIVEDI, J. M. (1973). Acta Cryst. A29, 45-49. 
PATOM~.KI, L. K. & LINKOAHO, M. V. (1969). Acta Cryst. A25, 

304-305. 
PIESBERGEN, U. (1966). In Semiconductors and Semimetals, edited 

by R. K. WILLARDSON & A. C. BEER, Voi. 2, pp. 49-60. New 
York: Academic Press. 

REDMOND, A. D. & YATES, B. (1972). J. Phys. C, 5, 1589-1603. 
RFFBFR, R. R. (1974). Phys. Status Solidi A, 26, 253-260. 
ROEDHAMMER, P., WEBER, W., GMELIN, E. & REIDER, 

K. H. J. (1976). J. Chem. Phys. 64, 581-585. 
ROWE, J. M., NICKLOW, R. M., PRICE, D. L. & ZANIO, K. (1974). 

Phys. Rev. B, 10, 671-675. 
RUSAKOV, A. P., VEKILOV, Y. K. & KADYSHEVICH, A. E. (1970). 

Fiz. Tverd. Tela, 12, 3238-3243. [Soy. Phys. Solid State (1971), 
12, 2618-2621.] 

SHARKO, A. V. & BOTAK1, A. A. (1970). Fiz. Tverd. Tela, 12, 
2247-2249. [Soy. Phys. Solid State (1971), 12, 1796-1798.] 

SKELTON, E. L., RADOFF, P. L., BOLSAITIS, P. & VERBALIS, A. 
(1972). Phys. Rev. B, 5, 3008-3012. 

SMIRNOV, I. A. (1972). Phys. Status Solidi A, 14, 363-404. 
SUBHADRA, K. G. • S1RDESHMUKH, D. B. (1977). Prarfiana, 9, 

223-227. 
SUBHADRA, K. G. ~. SIRDESHMUKH, D. I .  (1978a). Prar~ana, 

10, 357-360. 
SUBHADRA, K. G. & SIRDESHMUKH, D. B. (1978b). Pra~ana, 

10, 597-600. 
VETELINO, J. F., MITRA, S. S. & NAMHOSKI, K. V. (1970). Phys. 

Rev. B, 2, 2167-2175. 
WALFORD, L. K. & SCHOEFFEL, J. A. (1970). Philos. Mag. 21, 

375-384. 
WILLIS, B. T. M. & PRYOR, A. W. (1975). Thermal Vibrations in 

Crystallography. Cambridge Univ. Press. 
ZENER, C. & BILINSKY, S. (1936). Phys. Rev. 50, 101-104. 
ZUmK, K. & VALVODA, V. (1975). Czech. J. Phys. B25, 1149-1154. 

Acta Cryst. (1988). A44, 142-144 

Simple Statistics for Intensity Data from Twinned Specimens 

By T. O. YEATES 

UCLA Department of Chemistry and Biochemistry and Molecular Biology Institute, Los Angeles, CA 90024, USA 

(Received 6 May 1987; accepted 29 September 1987) 

Abstract 

The statistics of intensity data from hemihedrally 
twinned specimens are analyzed in terms of a new 
parameter and are shown to take a simple form in 
both the centrosymmetric and non-centrosymmetric 
cases. This analysis provides a sensitive method for 
determining the twinning fraction. The effects of 
intensity measurement errors on the observed statis- 
tics are discussed. 

Introduction 

When a crystal lattice posesses a rotational symmetry 
axis which is not a symmetry element of the space 
group of the crystal, crystal specimens may grow as 
merohedral  twins. In this case, the reciprocal lattices 
of the different crystal twin domains of the specimen 
exactly overlap. The resulting diffraction intensities 
are given by linear combinations of the true un- 
twinned intensities of reflections which are related by 
the twinning operation. In order to extract the true 
intensities from the observed intensities, one must be 
able to determine the twinning fraction (fractional 
volume of the specimen) for each of the separate 
twins. Several methods have been described for 
approximating the twinning fraction (Fisher & Sweet, 
1980; Murray-Rust, 1973; Britton, 1972; Rees, 1980). 
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A statistical treatment for hemihedral twinning (two 
twin domains) has been developed by Rees (1980). 
In that treatment, the statistical distribution for cen- 
trosymmetric reflections cannot be determined 
analytically. In addi t ion,  the intensities must be nor- 
malized prior to analysis. In the present treatment, 
these problems are avoided by deriving the statistics 
of a parameter H, which is a function of the two 
twin-related intensity measurements in hemihedral 
twinning. In the discussions which follow, we assume 
that the untwinned intensities obey Wilson's (1949) 
statistics and that intensities for untwinned reflections 
are independent. 

Statistics for centrosymmetric reflections 

Let 

H : ( q - p ) / ( q + p )  (1) 

where p and q are intensity measurements of reflec- 
tions related by the twinning operation. (Criteria by 
which weak pairs of reflections may be rejected 
without bias are discussed in the Errors section.) With 
a twinning fraction of a (0 < a < ½), 

p = (1 - ~)1FII 2 + ~ IF212 (20) 

and 

q = ~IF,  I 2 +(1  - ,~)lFd 2 (2b) 
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